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Abstract

Each human genome is a 3 billion base pair set of encoding instructions. Decoding
the genome using deep learning fundamentally differs from most tasks, as we do
not know the full structure of the data and therefore cannot design architectures to
suit it. As such, architectures that fit the structure of genomics should be learned not
prescribed. Here, we develop a novel search algorithm, applicable across domains,
that discovers an optimal architecture which simultaneously learns general genomic
patterns and identifies the most important sequence motifs in predicting functional
genomic outcomes. The architectures we find using this algorithm succeed at
using only RNA expression data to predict gene regulatory structure, learn human-
interpretable visualizations of key sequence motifs, and surpass state-of-the-art
results on benchmark genomics challenges.

1 Introduction

Deep learning demonstrates excellent performance on tasks in computer vision, text and many other
fields. Most deep learning architectures consist of matrix operations composed with non-linearity
activations. Critically, the problem domain governs how matrix weights are shared. In convolutional
neural networks – dominant in image processing – translational equivariance (“edge/color detectors
are useful everywhere”) is encoded through the use of the convolution operation; in recurrent networks
– dominant in sequential data – temporal transitions are captured by shared hidden-to-hidden matrices.
These architectures mirror human intuitions and priors on the structure of the underlying data.
Genomics is an excellent domain to study how we might learn optimal architectures on poorly-
understood data because while we have intuition that local patterns and long-range sequential
dependencies affect genetic function, much structure remains to be discovered.

The genome is a very challenging data type, because although we have tens of thousands of whole
genome sequences, we understand only a small subset of base pairs within each sequence. While
the genetic code allows us to annotate the 5% of the genome encoding proteins (∼20,000 genes in
the human genome), we do not have a “grammar” for decoding the rest of the non-coding sequences
(90-95% of the mouse and human genomes) important for gene regulation, evolution of species and
susceptibility to diseases. The availability of a wealth of genomic assays (PBM, CHIP-seq, Hi-C)
allows us to directly measure the function of specific regions of the genome, creating an enormous
opportunity to decode non-coding sequences. However, the overwhelming volume of new data makes
our job as decoders of the genome quite complex. The design and application of new domain-specific
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architectures to these datasets is a promising approach for automating interpretation of genomic
information into forms that humans can grasp.

2 Related Work

Inspired by human foveal attention where global glances drive sequential local focus, attention
components have been added to neural networks yielding state-of-the-art results on tasks as diverse
as caption generation, machine translation, protein sublocalization, and differentiable programming.
There are two main architectural implementations: hard attention, where the network’s focus mecha-
nism non-differentiably samples from the available input, and soft attention, where the component
outputs an expected glimpse using a weighted average. Beyond biological inspiration, these compo-
nents enable improved performance and excellent intepretability. Other techniques have been applied
for interpreting neural networks without changing their architectures (Simonyan et al. [2013], Zeiler
and Fergus [2014], Springenberg et al. [2014]), but these are simply heuristics for finding the relevant
regions of an input and do not work with all existing modern neural network components.

Previous groups have demonstrated excellent progress applying deep learning to genomics. Both
Alipanahi et al. [2015] and Lanchantin et al. [2016] provide initial results on the task of learning
which sequences a transcription factor (a biological entity which affects gene expression) can bind
using convolutional architectures. This problem appears suited for convolution, as motifs determining
binding are expected to be modular (∼7-10 base pair units) and the setup of the task (preselected
input sequences of fixed short length) does not allow for learning significant long-term dependencies.
In particular, Alipanahi et al. [2015] demonstrated that a single-layer convolutional neural network,
DeepBind, outperformed 26 other tested machine learning approaches in predicting probe intensities
on protein binding microarrays from the DREAM5 PBM challenge, and then showed that the same
architecture generalized to the related task of predicting transcription factor binding sites (TFBSs)
from sequencing measurements of bound DNA. Subsequently, Lanchantin et al. [2016] showed that a
deeper network with the addition of highway layers improved on DeepBind results in the majority of
cases tested [Srivastava et al., 2015]. In addition, Basset [Kelley et al., 2015], an architecture trained
to predict motifs of accessible DNA from sequencing regions of open chromatin, was able to map
half of the first layer convolutional filters to human TFBSs.

3 Development of Genetic Architect

Deep learning algorithm development is often dependent on the knowledge of human domain
experts. Researchers in domains such as computer vision and natural language processing have
spent much more time tuning architectures than in genomics. The challenge in genomics is that our
insufficient understanding of biology limits our ability to inform architectural decisions based on data.
Early genomic deep learning architectures have shown promising results but have undertaken only
limited exploration of the architectural search space over possible components. In addition, not all
components work well together, and there is evidence optimal component choice is highly dependent
on the domain. Accordingly, we design a novel road-map for applying deep learning to data on which
we have limited prior understanding, by developing an iterative architecture search over standard and
cutting-edge neural net building blocks.

Prior approaches to architecture search focus on finding the best architecture in a single step, rather
than sequentially learning more about the architecture space and iteratively improving models
(Bergstra et al. [2011], Bergstra and Bengio [2012], Snoek et al. [2012]). Our framework understands
the results allowing us to sequentially narrow the search space and learn about which combinations
of components are most important. Since our algorithm limits the most important hyperparameters to
their best ranges, they no longer dominate the search space and we discover additional hyperparame-
ters that are most important and can help us create a highly tuned architecture. The sequential nature
allows us to fork our architectural search into independent subspaces of coadapted components, thus
enabling further search in each parallel branch to be exponentially more efficient than considering the
union of all promising architectures.

The heart of the framework is an interactive visualization tool (Figure 4). Given any hyperparameter
optimization run, it produces common patterns for the best few datapoints and presents this informa-
tion in highly-interpretable decision trees showing effective architectural subspace and plots of the
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Table 1: Mean and median AUC of models and percentage of datasets on which each model
outperforms DeepBind or DeepMotif.

model mean AUC median AUC vs DeepBind vs DeepMotif
DeepBind 0.904 0.932 - -
DeepMotif 0.927 0.949 85.2 -
AttentionNet 0.933 0.952 92.6 67.6

interactions between the most significiant hyperparameters, informing general domain intuition and
guiding future experiments. The framework is general enough to be applied to other domains, and is
orthogonal to existing hyperparameter optimization algorithms. These algorithms can be applied in
the inner loop of the sequential search of our tool, which then interprets the results and informs the
user about the domain and how to manually prune the search space.

We employ Genetic Architect to discover an optimal architecture for a novel genome annotation task,
regression to predict lineage-specific gene expression based on genomic sequence inputs, for which
six stages of architecture search were required. Figure 1A shows the sequential process of architecture
search, the most important findings at each stage of the process, and tool-guided division of the search
into two separate promising architectures. By splitting effective architectures into separate branches
for further optimization, our tool identifies high-performing but architecture-specific choices that may
be difficult to notice when architectures are mixed together.

The application of our tool demonstrates the power in refining architectural components that dominate
results to uncover additional hyperparameter combinations that perform well together. Several
examples we encounter during use of the tool for design of architectures for genomics follow:
1) removal of batch normalization demonstrated clear superiority of exponential linear units, 2)
dimensionality reduction in the middle of the convolutional network module was beneficial to the
recurrent-based architectures (perhaps since it decreased the distance of long-range dependencies),
and 3) in contrast, non-recurrent architectures required wider layers (likely to enable processing of
long-range dependencies in final dense layers). In our search over architectures using soft attention,
we found that fully-connected layers were preferred to convolutional layers as it made processing
global information more important. Finally, only by proceeding through several steps of optimization
did we find the unintuitive result that bidirectional LSTMs did not help with attentional models
(perhaps because the preceding layer effectively attends to a single location, making it difficult to
combine information from both directions).

The final models learned by Genetic Architect consist of several initial layers of convolutions,
residual blocks, an LSTM layer in the case of the PromoterNet architecture, and an attention-based
dimensionality reducing step followed by fully-connected layers. Previous approaches to genome
annotation use convolutional networks, which are ideal for detecting local features. However, more
closely approximating the structure of genomic information would take into account that a real
genome is a sequence, not a disjointed set, of local features – an input type on which recurrent
architectures generally excel. In addition, with larger sequences to analyze (identifiable promoter
sequences reach hundreds of base pairs in length), a neural network must learn to focus on the
most important parts of the sequence and integrate new information derived from each part with the
contextual information of the previously-seen sequence. As such, long genomic sequences seem an
ideal fit for the recurrent attentional models learned.

4 Experimental Results

4.1 Tasks

4.1.1 Transcription factor binding site (TFBS) classification

The TFBS binary classification task was proposed by Alipanahi et al. [2015] and used as a benchmark
by [Lanchantin et al., 2016]. The basic motivation is to learn a classifier that correctly predicts, from
empirical binding data on a training sample of short DNA sequences, which sequences in a separate
test set are TFBS (likely to be bound by biological entities, in this case, a given transcription factor
protein).
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Figure 1: Schematic of hyperparameter optimization and final architecture designs. A) Overview of
steps taken in hyperparameter optimization to generate AttentionNet and PromoterNet. B) Attention-
Net architecture. C) PromoterNet architecture.

Figure 2: Results of AttentionNet on transcription factor binding site (TFBS) task. A) AttentionNet
models outperform DeepMotif and DeepBind models trained on corresponding datasets. Each bar
represents the difference in AUC for one of 108 different datasets. B) Mean of attention mask over
all sequences in experiment. C) Recovery of transcription factor motifs by visualization of attention
masks produced by AttentionNet over example sequences.

The input and target data for the TFBS classification task consists of 108 datasets with an average of
∼31,000 sequences of 101 characters per dataset. Each sequence is a string of base pairs (A, C, G, or
T) and is transformed into an array with one-hot encoding. Each sequence has an associated label
(1 or 0) which indicates if this sequence is a TFBS. Each dataset represents a different chromatin
immunoprecipitation sequencing (ChIP-seq) experiment with a specified transcription factor, and
each sequence in the dataset a potential binding site. For each positive example, a negative example
is generated. The data included in the TFBS classification task derive from ENCODE CHIP-seq
experiments performed in K562 transformed human cell lines [Consortium, 2012].
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Figure 3: Results of PromoterNet on ImmGen lineage-specific expression prediction (ILSEP) task.
A) Comparison of predicted versus observed gene expression for DeepBind, DeepMotif, and Pro-
moterNet architectures. B) Visualization of attention mask over selected promoter sequences. C)
Mean attention mask over all promoters. D) Visualization of attention masks learned by models
trained on data from single lineages.

4.1.2 ImmGen lineage-specific expression prediction (ILSEP) regression

In addition to the TFBS classification problem, neural network architectures could be extended
to treat a much broader and complex variety of problems to do with interpreting biological data.
Here, we develop a novel genomic benchmark task, ILSEP, which requires regression to predict
empirically-determined related target data, namely, prediction of the amount of various biological
entities produced in different cellular contexts given an input genomic sequence.

The input dataset for the ILSEP task is 14,116 one-hot encoded (4,2000) input promoter sequences
and corresponding (243,) floating point gene expression outputs ranging between 2.60 and 13.95 (see
appendix for details). We split the dataset using 10-fold cross validation to obtain predictions for all
promoter gene expression pairs.
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4.2 Results on TFBS

4.2.1 Model performance

We benchmark the performance of AttentionNet models learned by hyperparameter optimization
described above against published state-of-the-art neural network models on the TFBS task, DeepBind
[Alipanahi et al., 2015] and DeepMotif [Lanchantin et al., 2016]. To compare the architectures, we
train models for each of 108 datasets, as in Lanchantin et al. [2016]. In a head-to-head comparison
on each dataset, AttentionNet outperforms DeepMotif in 67.6% of cases and the mean AUC across
datasets for AttentionNet is 0.933, improving over both DeepMotif (0.927) and DeepBind (0.904)
(Table 1).

4.2.2 Prediction and visualization of genomic information

Interpretable information about sequence features is an important consideration for genomic learn-
ing tasks where fundamental understanding of biology is as important as prediction power. We
hypothesize that a net which performed well on the TFBS classification task would be able to make
biologically meaningful inferences about the sequence structure. We show that the mean attention
weights across all positive sequences show a distinct “footprint” of transcription factor (TF) binding
consistent with known nucleotide preferences within each sequence (Figure 2B). Further, visualizing
the attention mask (with the addition of Gaussian blur) across input sequences for 10 representative
TFs showed the net focusing its attention on parts of the sequence known to be regulatory (Figure
2C).

To see if we could directly obtain motif sequences from the net, we took 10 nucleotides surrounding
the position with highest attention for each of the top 100 sequences of a TF and averaged across the
motifs. We took the maximum score for each nucleotide per position and queried the results against
JASPAR, the “gold standard” TFBS database (with q < 0.5) [Mathelier et al., 2015]. 30/57 motifs
possible to check (i.e. in JASPAR) were correct, and 39/57 corresponded to at least one transcription
factor. By additionally searching the top 3 recurring sequences attended to for each TF, we recover a
total of 42/57 correct motifs.

4.3 Results on ILSEP

4.3.1 Model performance

The PromoterNet architecture demonstrates a marked gain in performance over DeepBind and Deep-
Motif architectures adapted to the ILSEP regression task, achieving an average Pearson r correlation
value of 0.587 between out-of-sample predictions and target expression values across lineages, com-
pared to 0.506 and 0.441 for DeepBind [Alipanahi et al., 2015] and DeepMotif [Lanchantin et al.,
2016] respectively (Figure 3A). We also train PromoterNet architectures on single task regression
with a separate model for each of the 11 lineages and on cell type specific multi-task regression with
one output unit for each of 243 cell types, which obtains similar improvements in average Pearson r
correlation value of 0.592 over 0.502 for DeepBind and 0.498 for DeepMotif.

4.3.2 Promoter element recovery and visualization of proximal regulatory elements

Visualization of attention mask weights from the PromoterNet model reveals attended locations over
promoter sequences of 32 genes selected for highest mean expression across lineages are enriched
directly adjacent to the TSS, suggesting that properties of the core promoter sequence constitute the
most informative features for genes that do not show differences in expression across lineages (Figure
3B) (see appendix for list of genes). In contrast, attended locations over promoter sequences of 32
genes with maximal variance in expression across lineages span a much greater range of positions.
This indicates that in genes with the greatest degree of lineage-specific expression, informative
sequence features can occur throughout the promoter sequence. This observation merits follow up
given previous reports that the performance of (non-deep) classifiers for cell type specific expression
tasks trained only on TSS proximal promoter information is close to that of a random classifier
[Natarajan et al., 2012]. Consistent with accepted understanding that TSS proximal regions contain
genomic elements that control gene expression levels, we observe the maximum of average attention
mask weights across all promoters occurs at the center of input sequences, which corresponds to
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Table 2: Search space explored for AttentionNet and PromoterNet architectures, including techniques
from Maas et al. [2013], Graham [2014], Shah et al. [2016], Ioffe and Szegedy [2015], He et al. [2015],
Hochreiter and Schmidhuber [1997], Kingma and Ba [2014], Sutskever et al. [2013], Srivastava et al.
[2014].

Hyperparameter Values
conv filter size 3, 5, 7, 9
nonlinearity ReLU, Leaky ReLU, Very Leaky ReLU, ELU
using batch normalization for convs True, False
number of conv filters 8, 16, 32, 64
number of convs before dim. reduction 1, 2, 3, 4, 5
using residual blocks before dim. reduction True, False
type of dim. reduction None, Max Pool, Mean Pool, Strided Conv
dim. reduction stride 2, 4, 8
number of convs after dim. reduction 1, 2, 3, 4, 5
using residual blocks after dim. reduction True, False
number of RNN layers 0, 1, 2
number of units in RNN 16, 32, 64
RNN type Simple RNN, LSTM
using bidirectional RNNs True, False
RNN gradient clipping 0, 1, 5, 15
global reduction type None, Attention, Max Pool, Mean Pool
number of FC layers 0, 1, 2, 3
number of units in FC 64, 128, 256, 512, 1024
using batch normalization for FCs True, False
dropout probability for FCs (after) 0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6
L2 regularization 0, 1e-3, 1e-4, 1e-5
optimizer Adam, SGD w/ Nesterov Momentum
learning rate scale 0.03, 0.1, 0.3, 1.0, 2.0, 10.
batch size 25, 50, 125, 250

core promoter elements required for recruitment of transcriptional machinery [Maston et al., 2006]
(Figure 3C).

PromoterNet models trained for multi-task regression result in a global attention mask output across
all lineages. To investigate whether the PromoterNet architecture is capable of learning distinct
features for each lineage, we also visualize attention weights for a given promoter sequence from
separate models, each trained on expression data for a single lineage. We find that genes selected for
maximal variance in expression demonstrate distinct patterns of learned attention across lineages,
while a shared pattern of attention is learned for a control gene with high mean expression in all
lineages even when each lineage was trained on a separate model (Figure 3D).

5 Conclusion

We tackle the problem of discovering architectures on datasets where human priors are not available.
To do so we create a novel architecture search framework that is domain agnostic, is capable of
sequential architectural subspace refinement and informing domain understanding, and is composable
with existing hyperparameter optimization schemes. Using this search algorithm, we create state-
of-the art architectures on significant challenges in the domain of genomics utilizing a combination
of standard and cutting-edge components. In particular, the learned architecture is capable of
simultaneous discovery of local and non-local patterns, important subsequences, and sequential
composition thereby capturing substantial genomic structure.
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Table 3: AttentionNet architecture

Layer
3x1 conv 64 filters + BN + ELU
3x1 conv 64 filters + BN + ELU
residual block (w/ 3x1 conv 64 filters + BN + ELU + 3x1 conv 64 filters + BN)
residual block (w/ 3x1 conv 64 filters + BN + ELU + 3x1 conv 64 filters + BN)
residual block (w/ 3x1 conv 64 filters + BN + ELU + 3x1 conv 64 filters + BN)
residual block (w/ 3x1 conv 64 filters + BN + ELU + 3x1 conv 64 filters + BN)
residual block (w/ 3x1 conv 64 filters + BN + ELU + 3x1 conv 64 filters + BN)
attention (w/ 3x1 conv 64 filters + BN + tanh + 3x1 conv 1 filter + BN + softmax)
FC 256 units + ELU + 0.2 dropout
FC 256 units + ELU + 0.2 dropout
FC 256 units + ELU + 0.2 dropout
FC 1 unit + sigmoid

Table 4: PromoterNet architecture

Layer
5x1 conv 8 filters + BN + ELU
5x1 conv 8 filters + BN + ELU
5x1 conv 8 filters + BN + ELU
5x1 conv 8 filters + BN + ELU
4x1 maxpool, stride 4
residual block (w/ 5x1 conv 8 filters + BN + ELU + 5x1 conv 8 filters + BN)
residual block (w/ 5x1 conv 8 filters + BN + ELU + 5x1 conv 8 filters + BN)
residual block (w/ 5x1 conv 8 filters + BN + ELU + 5x1 conv 8 filters + BN)
LSTM 16 units
attention (w/ 5x1 conv 8 filters + BN + tanh + 5x1 conv 1 filter + BN + softmax)
FC 256 units + ELU + 0.3 dropout
FC 256 units + ELU + 0.3 dropout
FC 256 units + ELU + 0.3 dropout
FC 1 unit + sigmoid

Figure 4: Example decision tree output from Genetic Architect visualization tool depicting significant
hyperparameters for models with top 20% performance.
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6 Appendix

6.1 ILSEP data processing

For the input sequences in the ILSEP task, we use sequences spanning 1 kilobase upstream and
downstream of transcriptional start sites (TSS), the region of the promoter at which production
of the gene is initiated, for 17,565 genes from the Eukaryotic Promoter Database [epd]. For the
corresponding labels, we obtain expression data (log2 normalized microarray intensities) for each
of these genes in each of 243 immune cell types from the ImmGen Consortium April 2012 release,
which contains data for 21,755 genes x 243 immune cell types after quality control according to
published methods [Ericson et al.]. Intersection of these two datasets by gene results in a dataset of
14,116 input promoter sequences and expression value target pairs.

To create lineage-specific gene expression value targets, we combine cell types into 11 groups
following the lineage tree outlined in previous work: B cells (B), dendritic cells (DC), gamma delta T
cells (γδ), granulocytes (GN), macrophages (Mφ), monocytes (MO), natural killer cells (NK), stem
and progenitor cells (SP), CD4+ T cells (T4), and CD8+ T cells (T8), and average expression values
across samples within each group [Jojic et al., 2013].

6.2 Selected genes (Figure 3B)

Highest mean expression across lineages: Rac2, Rpl28, Pfn1, Rpl9, Ucp2, Tmsb4x, Tpt1, Rplp1,
Hspa8, Srgn, Rpl27a, Rpl13a, Cd53, Eef2, Rps26, Cfl1, Ppia, Gm9104, Rps2, Rps27, Actg1, Laptm5,
Rpl21, Eef1a1, Rplp0, Gm15427, Pabpc1, B2m, Gapdh, Actb, Rpl17, Rps6

Highest variance in expression across lineages: Plbd1, Tlr13, Tyrobp, Ifitm2, Pld4, Pla2g7, Gda,
Cd96, Gzma, Nkg7, Ctsh, Klrb1c, Ccl6, Prkcq, Itgam, Sfpi1, Itk, Ms4a4b, Alox5ap, Ly86, Cd2,
Fcer1g, Gimap3, Il2rb, Gimap4, Ifitm6, Cybb, Ifitm3, Mpeg1, H2-Aa, Cd3g, Lyz2

Random control: Krt84, Lrrc8b, 8030411F24Rik, Syngr2, Spint3, Slc17a4, Slc22a23, Thoc6,
AF529169, Phf5a, Yif1b, 4930467E23Rik, Pgam1, Pcdhb1, Bak1, Neu3, Plcb2, Fabp4, Srgap1,
Olfr1339, Sox12, Atg7, Gdf10, 1810008A18Rik, 1700011A15Rik, Anks4b, Magea2, Pygb, Spc25,
Rras2, Slc28a3, 9130023H24Rik
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